
TBone Documentation
Release 0.5.0.4

475 Cumulus Ltd

Jan 05, 2019

Basics

1 Overview 3
1.1 Motivation . 3

1.1.1 Background . 3
1.1.2 What TBone tries to solve . 3
1.1.3 Minimum Opinions . 4
1.1.4 Antipatterns . 4

1.2 Installation and Testing . 4
1.2.1 Requirements . 4
1.2.2 Installation with git . 4
1.2.3 Running the tests . 5
1.2.4 Optional dependencies . 5

1.3 Getting Started . 5
1.3.1 Selecting a web server . 5
1.3.2 Model Definition . 5
1.3.3 Sanic Example . 6
1.3.4 Aiohttp Example . 6

1.4 Data Structure and Serialization . 6
1.4.1 Define a Schema . 6

1.4.1.1 Models . 6
1.4.1.2 Fields . 7
1.4.1.3 Nested Models . 7
1.4.1.4 Model Options . 8
1.4.1.5 Excluding fields and serialize methods . 9

1.4.2 Data Traffic . 9
1.4.3 Import Data . 10
1.4.4 Export Data . 11
1.4.5 Validation . 11
1.4.6 Serialization . 12

1.4.6.1 Projection . 13
1.4.6.2 serialize methods . 13

1.4.7 De-serialization . 14
1.4.7.1 Readonly . 15

1.5 Data Persistency . 15
1.5.1 Overview . 15
1.5.2 MongoDB . 15

1.5.2.1 Primary Key . 16

i

1.5.2.2 Indices . 16
1.5.2.3 Additional Database Operations . 17
1.5.2.4 Full Text Search . 19

1.5.3 Extending to other datastores . 20
1.6 Resources . 20

1.6.1 Overview . 20
1.6.2 Sanic and AioHttp . 20
1.6.3 Resource Options . 21
1.6.4 Formatters . 21
1.6.5 Authentication . 21
1.6.6 HATEOAS . 22
1.6.7 Nested Resources . 22
1.6.8 MongoDB Resources . 23

1.6.8.1 CRUD . 23
1.6.8.2 Filtering . 24
1.6.8.3 Sorting . 24
1.6.8.4 Full Text Search . 24

1.6.9 Hooking up to application’s router . 25
1.6.9.1 Sanic Example . 25
1.6.9.2 AioHttp Example . 26

1.6.10 Routers . 26
1.7 Dispatch . 27

1.7.1 Signals . 27
1.7.1.1 Declaring . 27
1.7.1.2 Sending Signals . 28
1.7.1.3 Receiving Signals . 28

1.7.2 Channels . 28
1.7.2.1 Websockets . 30
1.7.2.2 Carriers . 31

1.8 Testing . 31
1.9 Data . 31

1.9.1 Fields . 32
1.9.1.1 Base Field . 32
1.9.1.2 Simple Fields . 32
1.9.1.3 Composite Fields . 32
1.9.1.4 Network Related Fields . 32
1.9.1.5 MongoDB Fields . 32
1.9.1.6 Extra Fields . 32

1.9.2 Models . 32
1.10 DB . 32

1.10.1 MongoDB . 32
1.11 Resources . 32

1.11.1 Authentication . 32
1.11.2 Formatters . 32
1.11.3 Base Resource . 33
1.11.4 MongoDB Resource . 35
1.11.5 AioHttp Mixin . 35
1.11.6 Sanic Mixin . 35
1.11.7 Router . 35

1.12 Dispatch . 35
1.12.1 Signals . 35
1.12.2 Channels . 35

1.13 Indices and tables . 36

ii

Python Module Index 37

iii

iv

TBone Documentation, Release 0.5.0.4

TBone is a framework for building full-duplex, RESTful APIs on top of a Python asynchronous web-server using
asyncio.

TBone is web-server agnostic, provided that the web-server is built on asyncio. It works out-of-the-box with Sanic or
Aiohttp and can be extended for other asyncio-based web-servers as well. TBone was designed to be nonblocking and
every component is implemented such that it works with the asyncio event loop

Basics 1

https://github.com/channelcat/sanic
https://github.com/aio-libs/aiohttp

TBone Documentation, Release 0.5.0.4

2 Basics

CHAPTER 1

Overview

TBone is comprised of 4 major modules:

1. Data Structure - an ODM modeling mechanism for schema definition, data validation and serialization.

2. Data Persistency - Persistency mixin classes for document stores with a full implementation for MongoDB.

3. Resources - Mechanism for creating full-duplex RESTful APIs.

4. Dispatch - Classes for managing internal and external events.

1.1 Motivation

TBone was desighed with a simple goal in mind, to make developing asyncronous web applications and web services
easy, quick and painless.

1.1.1 Background

Developers who’ve gained experience working with frameworks such as Django, often find it difficult to make the
switch to develop asyncronous non-blocking web applications and services. This is mainly due to the initial confusion
understanding concurrent programming, but also because, at the time of this writing, there is no clear path to quickly
and easily develop RESTful APIs that can enjoy the benefits of concurent code and asynchronous web servers.

1.1.2 What TBone tries to solve

TBone was created to make it simple and easy to develop full-duplex RESTful APIs. This means that such APIs have
bi-directional communication baked into them, so browser and mobile apps can enjoy efficient communication and a
modern user experience. TBone utilizes both HTTP and Websocket protocols to expose REST-like APIs which makes
it extremely simple to develop backends for a wide range of applications.

3

TBone Documentation, Release 0.5.0.4

In addition, TBone provides a powerful Object Data Mapper (ODM) layer for schema definition, data validation and
serialization, and a persistency layer for MongoDB. Since the ODM layer is decoupled from the persistency layer, it
is easy to extend TBone to work with other document stores.

With a REST-like Resource layer, an ODM and a MongoDB persitency layer, TBone makes it possible to develop web
applications and services quickly and with a small code footprint.

1.1.3 Minimum Opinions

TBone is an HTTP and Websocket agnostic framework. This means that developers can use either Sanic or Aiohttp as
their http/websocket webserver based on their preferences. Its even possible to use polyfill libraries such as SockJS .
TBone does not impose an application structure or even a configuration pattern. So you can easily add TBone to your
existing async web applications without having to work too hard to fit it in.

1.1.4 Antipatterns

Although TBone strives to be unopinionated as to your application architecture, there are several things which TBone
assumes:

1. You are using Python 3.5 and above. At the time of this writing, Python 3.5 is considered a mainstream version
of Python. In order to develop quickly and to make testing possible, we have decided not to support Python 2 or
Python 3 versions prior to 3.5. This makes the code footprint smaller and easier to maintain.

2. TBone was designed to use asyncio and works with web servers which are built on top of asyncio. Although
there are other asyncronous web servers (such as the wonderful Tornado) we chose to stick with asyncio only.

1.2 Installation and Testing

1.2.1 Requirements

The following are requirements to use TBone:

1. TBone requires an asyncronous web server, based on asyncio to run on. Out of the box it supports both Sanic
and Aiohttp . It is possible to extend TBone to work with other asyncio based web servers

2. TBone works with Python 3.5+ this is due to the use of the async/await syntax. Earlier versions of python will
not work.

The easiest way to install TBone is through PyPI:

pip install tbone

1.2.2 Installation with git

The project is hosted at https://github.com/475cumulus/tbone and can be installed using git:

git clone https://github.com/475cumulus/tbone.git
cd tbone
python setup.py install

4 Chapter 1. Overview

https://github.com/channelcat/sanic
https://github.com/aio-libs/aiohttp
http://sockjs.org/
https://github.com/475cumulus/tbone

TBone Documentation, Release 0.5.0.4

1.2.3 Running the tests

TBone has a suite of tests implemented on top of pytest Before running the tests additional requirements need to
be installed, including pytest and pytest-asyncio. The file test.txt in the requirements directory lists all
requirements needed for testing.

To run all the tests execute the command in the root directory of the project:

pytest

For coverage results run the following commands:

coverage run --source tbone -m py.test
coverage report

1.2.4 Optional dependencies

TBone includes very few Python library dependencies. However, depending on the usage developers may need to
manually install additional libraries:

Install sanic when using TBone with a sanic webserver:

pip install sanic

Install aiohttp when using TBone with a aiohttp webserver:

pip install aiohttp

To use the MongoDB persisrency layer and resources install Motor the asynchronous Python driver for MongoDB:

pip install motor

1.3 Getting Started

Note: Make sure you have at least version 3.5 of Python. TBone uses the async/await syntax, so earlier versions of
python will not work.

1.3.1 Selecting a web server

TBone works with either Sanic or Aiohttp . It can be extended to work with other nonblocking web servers. If you’re
new to both libraries and want to know which to use, please consult their respective documentation to learn which is
more suited for your project. Either way, this decision won’t affect the you will use TBone.

1.3.2 Model Definition

TBone provides an ODM layer which makes it easy to define data schemas, validate and control their serialization.
Unlike ORMs or other MongoDB ODMs, such as MongoEngine, The model definition is decoupled from the data
persistency layer, allowing you to use the same ODM with persistency layers on different document stores.

Defining a model looks like this:

1.3. Getting Started 5

https://github.com/channelcat/sanic
https://github.com/aio-libs/aiohttp

TBone Documentation, Release 0.5.0.4

from tbone.data.fields import *
from tbone.data.models import *

class Person(Model):
first_name = StringField(required=True)
last_name = StringField(required=True)
age = IntegerField()

1.3.3 Sanic Example

1.3.4 Aiohttp Example

1.4 Data Structure and Serialization

TBone provides an ODM (Object Document Mapper) for declaring, validating and serializing data structures.

Note: Data structure and data persistency are decoupled in TBone. The ODM is implemented seperately from the
persistency layer and thus allows for implementing other datastore persistency layers, in addition to the default one for
MongoDB

The Model class is used as the Base for all data models, with an optional DB mixin class for persistency.

1.4.1 Define a Schema

The ODM works very similarly to Django models or other ORMS and ODMs for Python. The main difference is
that the classes are not bound, by default, to a datastore. For more information on binding a model to a datastore see
Persistency

1.4.1.1 Models

Defining a model is done like so:

from tbone.data import Model

class Book(Model):
title = StringField(required=True)
publication_date = DateField()
authors = ListField(StringField)
number_of_pages = IntegerField()

Each field in the model is defined by its matching type and by optional parameters which affect its validation and
serialization behavior.

Note: Why is TBone not using an external Python schema and validation library such as Marshmallow or Schematics
?

Both libraries mentioned above are excellent for performing the tasks of schema definition, data validation and serial-
ization. However, both libraries were developed to be generic and do not use the asynchronous capabilities of TBone

6 Chapter 1. Overview

https://github.com/marshmallow-code/marshmallow
https://github.com/schematics/schematics

TBone Documentation, Release 0.5.0.4

to their advantage. Therefore TBone implements its own data modeling capabilities which are designed to work in an
asynchronous nonblocking environment. An example of this is explained in detail in the Serialize Methods section

1.4.1.2 Fields

Fields are used to describe individual variables in a model schema. There are simple fields for data primitives such as
int and str and there are composite fields for describing data such as lists and dictionaries. Developers who have a
background in ORM implementations such as the one included in Django, should be very familiar with this concept.
All fields classes derive from BaseField and implement coersion methods to and from Python natives, with respect
to their designated data types. In addition, fields provide additional attributes pertaining to the way data is validated,
and the way data is serialized and deserialized. They also provide additional attributes for database mixins

Attributes

The following table lists the different attributes of fields and how they are used

Attribute Usage Default
required Determines if the field is required when data is imported or deserialized False
default Declares a default value when none is provided. May be a callable None
choices Set a list of choices, limiting the field’s acceptable values None
validators A list of callables to provide external validation methods. See validators None
projection Determines how the field’s data is serialized. See Projection True
readonly Determines if data can be deserialized into this field. See Deserialization False
primary_key Used by resources to determine how to construct a resource URI False

There are additional attributes which pertain only to specific fields. For example, min and max can be defined for an
IntegerField to determine a range of acceptable values. See the API Reference for more details.

Composite Fields

Composite fields are used to declare lists and dictionaries using the ListField and DictField fields respectively.
A composite field is always based on another field which acts as the base type. A list of integers will be defined as
ListField(IntegerField) and a dictionary of strings will be defined as DictField(StringField) .

The base field which defines the composite field can also accept the standard field attributes. The composite field itself
can also define attributes related to its own behavior, like so:

class M(Model):
counters = DictField(IntegerField(default=0))
tags = ListField(StringField(default='Unknown'), min_size=1, max_size=10)

1.4.1.3 Nested Models

Documents can contain nested objects within them. In order to declare a nested object within your model, simply
define the nested object as a model class and use the ModelField to associate it with your root Model, like so:

class Person(Model):
first_name = StringField()
last_name = StringField()

1.4. Data Structure and Serialization 7

TBone Documentation, Release 0.5.0.4

class Book(Model):
title = StringField(required=True)
publication_date = DateField()
author = ModelField(Person)

This data model will produce an output like this:

{
"title": "Mody Dick",
"publication_date" : "1851-10-18",
"author" : {

"first_name" : "Herman",
"last_name" : "Melville"

}
}

Nested objects can also be as the base fields for within lists and dictionaries, like so:

class Book(Model):
title = StringField(required=True)
publication_date = DateField()
authors = ListModel(ModelField(Person))

This data model will produce an output like this:

{
"title": "The Talisman",
"publication_date" : "1984-11-08",
"authors" : [{

"first_name" : "Stephen",
"last_name" : "King"

},{
"first_name" : "Peter",
"last_name" : "Straub"

}]
}

Note: If you are using a data persistency mixin such as the MongoCollectionMixin you should only add the
mixin to your root model and not to any of your nested models.

1.4.1.4 Model Options

Every Model derived class has an internal Meta class which defines its default parameters. This is a very similar
approach to meta information declared in Django models.

The following table lists the model options defined within the Meta class.

8 Chapter 1. Overview

TBone Documentation, Release 0.5.0.4

Option Usage Default
name

Name of the model.
This is used in persistency mixins
to
set the name in the datastores

name of
the model

namespace Declares a namespace which
prepends the name of the Model

None

exclude_fields Exclude fields from base models in
subclass

[]

exclude_serialize Exclude serialize methos from base
model in subclass

[]

creation_args

Used by
MongoCollectionMixin

for passing creation arguments

None

indices Used to declare database indices None

1.4.1.5 Excluding fields and serialize methods

The Model’s Meta class includes two lists for removing fields and serialize methods inherited from the base class.
This is useful when wanting to create multiple resources for the same model, which expose a different set of fields.
Consider the following example:

class User(Model):
username = StringField()
password = StringField()
first_name = StringField()
last_name = StringField()

@serialize
async def full_name(self):

return '{} {}'.format(self.first_name, self.last_name)

class PublicUser(User):
class Meta:

exclude_fields = ['password']
exclude_serialize = ['full_name']

In this example demonstrates how create a User model, and a PublicUser model, which is a variation of the User
model, by inheriting User and then omitting the password field and the full_name serialize method.

1.4.2 Data Traffic

Models are iterim data components that hold data in memory, coming in and out of the application. Generally, data
travels from and to datastores and and application consumers. Models hold the data in memory and facilitate data
management in the application flow.

The Model class is a central part of TBone and has two data traffic concepts:

1.4. Data Structure and Serialization 9

TBone Documentation, Release 0.5.0.4

1. Import and Export

2. Serialization and deserialization

The big difference between the two data traffic concepts is their purpose. Import and export take data in and out of the
Model exactly as it is defined in the schema. Serialization and deserialization provides mechanisms for developers to
control how data flows in and out of the Model to suit the application logic.

Generally speaking, import and export are used for data storage while serialization and deserialization are used for
API resources and buiness logic.

The following diagram illustrates this:

It may be useful to consider import / export methods as inbound methods, used for storing data in datastores and
serialization / deserialization methods as outbound methods, used for exposing APIs in a controlled manner

1.4.3 Import Data

There are multiple ways to manipulate data on a Model.

The most obvious is to access it’s fields directly, like so:

>>> book = Book()
>>> b.title = 'Crime and Punishment'

While this example is pretty straighforward, it may not be very efficient if in cases were data is already stored in a
dict which needs to be imported into a Model.

The import_data method takes care of that, like so:

10 Chapter 1. Overview

TBone Documentation, Release 0.5.0.4

>>> data = {
... 'title': 'Crime and Punishment',
... 'author': ' Fyodor Dostoyevsky',
... 'publication_date': '1866-01-01' # actual date varies
... }
>>>
>>> book = Book()
>>> book.import_data(data)

A quicker way would be to use the Model constructor, like so:

>> book = Book(data)

Data can be imported in a dict containing Python types, or data primitives. Once data is imported into the model is
coerced into Python types and validated.

1.4.4 Export Data

The export_datamethod is used to convert the model into a Python dict. The data is exported in a straighforward
manner, mapping all Model fields to key/value pairs, like so:

>>> data = book.export_data()
>>> data
{'isbn': '9781602523692', 'title': 'War and Peace', 'author': ['Leo Tolstoy'], 'format
→˓': 'Paperback', 'publication_date': datetime.datetime(1869, 1, 1, 0, 0,
→˓tzinfo=tzutc()), 'reviews': [], 'number_of_impressions': 0, 'number_of_views': 0}
>>> type(data)
<class 'dict'>

The export_data method exports all data in native Python types. It accepts an optional native parameter to
control how data is exported. If native is set to False data will be exported in primitive data types, like so:

>>> data = book.export_data(native=False)
>>> data
{'isbn': '9781602523692', 'title': 'War and Peace', 'author': ['Leo Tolstoy'], 'format
→˓': 'Paperback', 'publication_date': '1869-01-01T00:00:00+00:00', 'reviews': [],
→˓'number_of_impressions': 0, 'number_of_views': 0}
>>> type(data)
<class 'dict'>

Observing the difference with the previous example where publication_date was exported native python
datetime in this example publication_date was exported as a ISO_8601 formatted string.

1.4.5 Validation

Model validation is the process of validating the data contained by the model. Validation is done indi-
vidually for every field in the Model, and can also include model level validation, to combine values of
multiple fields. When Model.validate the model iterates through all its fields and call their respec-
tive validate methods individually. Each type of field implements its own validation, pertaining to its
data type.

Explicitly calling the model validation is done like so:

m = MyModel({'name': 'ron bugrundy'})
m.validate()

1.4. Data Structure and Serialization 11

TBone Documentation, Release 0.5.0.4

The Model.validate method does not return any value. However, a ValueError exception will be thrown if
any validation has failed.

There are 3 forms of field validation:

1. Type validation - Coercing the assigned data to the field’s data type.

2. Validator methods - These are field methods which are decorated with @validator and perform
additional validation that requires logic

3. External validator functions - These are functions which are external to the field class and are passed
into field’s declaration

To add an external validation to an existing field object, without subclassing, is done like so:

def validate_positive(value):
if value < 0:

raise ValueError('Value should be positive')

class Person(Model):
age = IntegerField(validators=[validate_positive])

In this example an external validation method was added to the list of validators without subclassing IntegerField.
This approach is useful when sharing validation methods across different fields.

Another approach is to subclass IntegerField and include the validation within the field it self, like so:

class PositiveIntegerField(IntegerField):

@validator
def positive(value):

if value < 0:
raise ValueError('Value should be positive')

In this example the validation is implemented within the field’s subclass.

1.4.6 Serialization

Models are responsible not only for declaring a schema and validating the data, but also for serializing the models to
useful data structures. Controlling the way data models are serialized is extremely useful when creating APIs. More
often than not, the application’s requirements dictate cases other than a straightforward one-to-one mapping between
the data attributes of a model and the API. In some cases there may be a need to omit some data, which is meant only
for internal use and not for API consumption. In other cases there may be additional data attributes, required as part
of an API endpoint, which are a result of a calculation, aggregation, or data manipulation between 1 or more data
attributes.

The following section reviews the tools that are implemented on the Model class and how they can be used to yield
the desired results.

Model serialization is done using the serialize method:

This will produce a Python dict with the model’s data. Unlike the export_data method, the one-to-one mapping
of data fields is the default behavior. Developers can use Projection and the @serialize decorator to control the
serialization of the model

Note: Model.serialize is a coroutine, which needs to be awaited, or pushed into the event loop

12 Chapter 1. Overview

TBone Documentation, Release 0.5.0.4

1.4.6.1 Projection

The previous section went over Model serialization methods. This section covers specific instructions that can be
added to the Field in order to determine how it is serialized.

Every Field in the Model has a projection attribute, which defaults to True. The projection field is a ternary
value which can be set to either True, False or None and determines the field’s serialization in the following way:

1. True means that the Field will always be serialized, even if its value is None

2. False means that the Field will only be serialized if its value is not None and will be skipped otherwise.

3. None means that the Field will never be serialized, regardless of its value.

When a Model serialization method is called, it iterates through all the fields and uses the projection attribute to
determine if and how to serialize the specific field.

The following example illustrates this:

>>> from tbone.data.models import *
>>> from tbone.data.fields import *
>>> class BlogPost(Model):
... title = StringField()
... body = StringField()
... number_of_views = IntegerField(default=0, projection=None)
...
>>> post = BlogPost({'title': 'Trees Are Tall', 'body': 'Trees can grow to be very
→˓tall ...'})
>>> await post.serialize()
{'title': 'Trees Are Tall', 'body': 'Trees can grow to be very tall ...'}

Note: Plain Python shell await a co-routines as it does not have a running event loop. You can either script this
code wrapped as a co-routine or use a 3rd party Python shell which supports an event loop.

The above example illustrates a Model that has a field used, in this case, for analytics, and is not required to be
included as part of the API

1.4.6.2 serialize methods

When designing APIs, it is sometimes required to expose data which is not directly mapped to a single field in the
model’s schema. Such data can be a result on a calculation, data aggregation or even data fetched from sources outside
the model. For this purpose, the Model class can implement serialize methods.

Serialize methods are regular member methods on the model with the following attributes:

1. Serialize methods accept no external parameters and rely only on the model’s data

2. Serialize methods always return a primitive value

3. Serialize methods are decorated with the @serialize decorator

4. Serialize methods are coroutines and therefore are prefixed with async

The following example illustrates this:

>>> from tbone.data.models import *
>>> from tbone.data.fields import *
>>> class Trainee(Model):
... weight = FloatField()

1.4. Data Structure and Serialization 13

https://en.wikipedia.org/wiki/Three-valued_logic

TBone Documentation, Release 0.5.0.4

... height = FloatField()

... @serialize

... async def bmi(self): # body mass index

... return (self.weight*703)/(self.height*self.height)

...
>>> t = Trainee({'weight': 81.5, 'height' : 178})
>>> t.serialize()
{'weight': 81.5, 'height': 178.0, 'bmi': 1.8083101881075623}

(Please do not consider the above example to be a real BMI calculator)

The example above brings the quetion of why serialize methods need to be coroutines. In the bmi serialize example
there are no lines of code which make use of the application’s event loop. However, serialize functions may include
data from external sources as well. If such an implementation would not be using a coroutine the code will be blocking.

The following example illustrates this:

from aiohttp import client
from tbone.data.models import Model
from tbone.data.fields import *

API_KEY = '<get your own for free>';
QUERY_URL = 'http://api.openweathermap.org/data/2.5/forecast?appid={key}&q={city},
→˓{state}'

class CityInfo(Model):
city = StringField()
state = StringField()

@serialize
async def current_weather(self):

async with aiohttp.ClientSession() as session:
async with session.get(QUERY_URL.format(key=API_KEY, city=self.city,

→˓state=self.state)) as resp:
if resp.status == 200: # http OK

data = await resp.json()
return data['list'][0]['main']['temp']

return None
.
.
.
city_info = CityInfo({'city': 'San Francisco', 'state': 'CA'})
serialized_data = await city_info.serialize()

To see a fully working example, please visit the examples page in the project’s repository

1.4.7 De-serialization

De-serialization is the process of constructing a data model from raw data, usually passed into the API. The Model
class implements a deserialize method which, by default, matches the data being passed to the fields defined on
the model. Variables are assigned to their respective fields and the object’s data is validated. Developers may want to
customize this behavior to control how models are deserialized, from data.

14 Chapter 1. Overview

TBone Documentation, Release 0.5.0.4

1.4.7.1 Readonly

Every model field can be assigned with the readonly attribute. This tells the model never to accept incoming data
to certain fields using the deserialization method. The following example illustrates this:

class User(Model):
username = StringField(required=True)
password = StringField(readonly=True)

1.5 Data Persistency

1.5.1 Overview

TBone provides data persistency in the form of mixin classes. Mixin classes mix with your data models and extend
the model’s ability to perform CRUD operatons on its data into a datastore. A mixin class is targeted at a specific
datastore and implements the underlying functionality over the datastore’s API.

Like most parts of TBone, the functionality data persistency mixins should be implemented as nonblocking. Every
method which calls upon the database should be implemented as a coroutine. The database driver must support
nonblocking calls. Failing to do so will limit’s TBone efficiency and your app to be truly asynchorous.

1.5.2 MongoDB

TBone provides the MongoCollectionMixin which is a full data persistency mixin implementation over the
MongoDB database, using Motor , the asynchronous python driver for MongoDB.

Note: By default TBone does not install the Motor library and its dependency PyMongo. If you’re using the
MongoCollectionMixin for your data persistency you must explicitly install Motor

The MongoCollectionMixin can be added to your Model sub classes like so:

from tbone.data.models import *
from tbone.data.fields import *
from tbone.data.fields.mongo import ObjectIdField
from tbone.db.models import MongoCollectionMixin

class Book(Model, MongoCollectionMixin):
_id = ObjectIdField(primary_key=True)
isbn = StringField(required=True)
title = StringField(required=True)
author = StringField()
publication_date = DateTimeField() # MongoDB cannot persist dates only and

→˓accepts only datetime

class Meta:
name = 'books'
namespace = 'store' # this will produce a collection named store.books in

→˓the database

In the above example, explicitely defines the _id field with the special ObjectIdField designed specifically for
mongoDB databases. MongoDB will automatically create the _id field for every document (unless overruled by

1.5. Data Persistency 15

http://motor.readthedocs.io

TBone Documentation, Release 0.5.0.4

creation arguments) Even if the _id field is not explicitely declared in the model. However, developers should add
this field to the model to include it in serialization methods.

1.5.2.1 Primary Key

The primary_key declared in the example above is not used for creating a database index. Its purpose is to set this
field as the primary key of the model, for usage in resources. The MongoResource class uses the field declared as
primary_key to construct the resource’s URI. A field that is declared as primary_key should be unique to the
collection. In MongoDB the _id field always is and therefore is the default primary key.

There are cases when a different primary key can be defined, that would serve the application’s API better. To illustrate
this the Book example above can be modified slightly, like so:

class Book(Model, MongoCollectionMixin):
_id = ObjectIdField()
isbn = StringField(primary_key=True)
title = StringField(required=True)
author = StringField()
publication_date = DateTimeField() # MongoDB cannot persist dates only and

→˓accepts only datetime

class Meta:
name = 'books'
namespace = 'store' # this will produce a collection named store.books in

→˓the database
indices = [{

'name': '_isbn',
'fields': [('isbn', pymongo.ASCENDING)],
'unique': True

}]

Fields that are declared as the primary key must have an index created with a unique constraint. For more declaring
indices see Indices below.

The MongoResource class automatically identifies the field designated at the primary and adjust its resource URI
construction accordingly. The API would then be accessed like so:

/api/books/9788422503552/

Passing the book’s ISBN as the resource’s unique identifier.

1.5.2.2 Indices

Each Model subclass can define a list of index directives which can be applied to the database’s collection. By
default MongoDB creates a default index to the _id field which is assigned to every document. MongoDB provides
an extensive list of features related to document indices. To learn more about MongoDB’s indices see the MongoDB
documentation.

TBone provides a convinient way to declare indices in the Model’s Meta class, which adhere to the MongoDB index
rules.

The following shows an example:

class Book(Model, MongoCollectionMixin):
isbn = StringField(primary_key=True)
title = StringField(required=True)
author = ListField(StringField)

16 Chapter 1. Overview

https://en.wikipedia.org/wiki/International_Standard_Book_Number

TBone Documentation, Release 0.5.0.4

class Meta:
name = 'books'
indices = [{

'name': '_isbn',
'fields': [('isbn', pymongo.ASCENDING)],
'unique': True

}]

This example of a Model subclass mixed with the MongoCollectionMixin The Meta class includes one index
directive with the following attributes: 1. name : give the index a unique name 2. fields: a list of fields to use for
creating the index 3. unique: indicate that the field’s value (isbn in this case) must be unique

It is important to remember that, unlike ORMs for relational databases, TBone model indices are not created automati-
cally. There is no concept of data migration and table (or collection) creation. In fact, MongoDB automatically creates
a new collection when writing a document into a non-existing collection. Therefore, it is up to the developer to explic-
itly call TBone’s model creation method for every model in the app. This is done with the create_collection
function

Calling the create_collection function for every model is something that should be done only when changes
are made to the model’s indices or when deploying to a new system. Therefore, a common practice would be to include
an additional Python script to achieve this. Please note that create_collection is a coroutine and needs to be
executed within an event loop:

#!/usr/bin/env python
encoding: utf-8

import asyncio
from bson.json_util import loads
from tbone.db import connect
from tbone.db.models import create_collection
from app import db_config
from models import Book, Author, Publisher

async def bootstrap_db():
db = connect(**db_config)

futures = []
for model_class in [Book, Author, Publisher]:

futures.append(create_collection(db, model_class))

await asyncio.gather(*futures)

def main():
loop = asyncio.get_event_loop()
loop.run_until_complete(bootstrap_db())
loop.close()

if __name__ == "__main__":
main()

1.5.2.3 Additional Database Operations

The MongoCollectionMixin mainly provides methods for performing CRUD database operations. However,
the MongoDB API provides a vast number of tools and methodologies to implements all kinds of data manipulation
scenarios. The following example demonstates such a case:

1.5. Data Persistency 17

TBone Documentation, Release 0.5.0.4

class Review(Model):
user = StringField(required=True)
text = StringField(required=True)

class Book(Model, MongoCollectionMixin):
isbn = StringField(primary_key=True)
title = StringField(required=True)
author = ListField(StringField)
publication_date = DateTimeField() # MongoDB cannot persist dates only and

→˓accepts only datetime
reviews = ListField(ModelField(Review), default=[])

In this example there is a Book model which contains a field that is a list of reviews. This list is essentially a list of
embedded documents, defined in the Reviewmodel. This is one of the ways to implement a one-to-many relationship
with a document store, such as MongoDB, by embedding all the reviews inside the book document itself. If this was
implemented with a relational database, most likely the Review model was an independent table and each record in
this table would have a foreign-key to a record in the Book table. Therefore, adding a new review would be a single
database operation to insert a new record to the Review table.

But in a document store, with reviews embedded into the book document, using basic CRUD database operations the
following needs to be done: 1. Fetch the book document 2. Append a new review to the list of embedded review
documents (allowing unrestrained access to the whole list) 3. Saving the book document back to the database

This seems to be a lot of work for a simple insertion of one review, not to mention the exposure to data that was
otherwise inserted by other users. To solve this, MongoDB provides the $push operator, which enables the appending
of a single embedded document into the review list. This can be done in a single database operation without having to
fetch the whole document first.

In order to utilize this capability the Book Model is extended with an additional custom method for performing this
operation, like so:

class Book(Model, MongoCollectionMixin):
isbn = StringField(primary_key=True)
...

async def add_review(self, db, review_data):
''' Adds a review to the list of reviews, without fetching and updating the

→˓entire document '''
db = db or self.db
create review model instance
new_rev = Review(review_data)
data = new_rev.export_data(native=True)
use model's pk as query
query = {self.primary_key: self.pk}
push review
result = await db[self.get_collection_name()].update_one(

filter=query,
update={'$push': {'reviews': data}},

)
return result

This model’s custom-made method takes care of adding a new review to the document with a single database operation
and without exposing the entire model to a full-document update.

MongoDB provides many operators that can be used to extend the basic CRUD methodology and thus improve code
reliability and performance. Please consult the MongoDB documentation to learn more about operators.

18 Chapter 1. Overview

TBone Documentation, Release 0.5.0.4

1.5.2.4 Full Text Search

TBone provides out-of-the-box full text search capabilities over MongoDB collections, accessed through the API.
Resource which subclass MongoResource already have most of the wiring to execute full text search on their data.
In order to utilize the full text search capabilities, the Model needs to include an index for FTS like so:

class Movie(Model, MongoCollectionMixin):
_id = ObjectIdField(primary_key=True)
title = StringField(required=True)
plot = StringField()
director = StringField()
cast = ListField(StringField)
release_date = DateField()
runtime = IntegerField()
poster = URLField()
genres = StringField()

class Meta:
indices = [

{
'name': '_fts',
'fields': [

('title', pymongo.TEXT),
('plot', pymongo.TEXT),
('cast', pymongo.TEXT),
('genres', pymongo.TEXT)

]
}

]

class MovieResource(SanicResource, MongoResource):
class Meta:

object_class = Movie

Once the FTS index is created and indexing is complete, searching the database through the api can simply be done
by making an HTTP request, like so:

/api/movies/?q="Robert De Niro"

This request will yield all the results that include this search phrase in either of the fields that were indexed for FTS.
For more on MongoDB full text search, see the MongoDB documentation

The q operand is used by default, but can be replaced. Doing so requires a change to the fts_operator in the
resources’s Meta class, like so:

class MovieResource(SanicResource, MongoResource):
class Meta:

object_class = Movie
fts_operator = 'search'

Then, the making the HTTP request is done like so:

/api/movies/?search="Robert De Niro"

1.5. Data Persistency 19

TBone Documentation, Release 0.5.0.4

1.5.3 Extending to other datastores

MongoDB is a general-purpose NoSQL document store that has been around for a while. It is widely used as an
alternative to relational databases and offers a wide range of features. Due to various considerations, developers may
choose to use a different database that is more tuned to their application requirements. TBone provides a MongoDB
persistency layer for models, but that layer can be replaced with a custom solution for another database. Not all
NoSQL databases would generally merge easily with TBone’s ODM. However, most NoSQL document-oriented and
key-value databases should be easily integrated with the ODM paradigm.

1.6 Resources

Resources are at the heart of the TBone framework. They provide the foundation for the application’s communication
with its consumers and facilitate its API. Resources are designed to implement a RESTful abstraction layer over HTTP
and Websockets protocols and assist in the creation of your application’s design and infrastructure.

1.6.1 Overview

Resources are class-based. A single resource class implements all the methods required to communicate with your
API over HTTP or Websocket, using HTTP-like verbs such as GET and POST. In addition it implements resource
events which translate to application events sent over websockets to the consumer.

A Resource subclass must implement all the methods it expects to respond to. The following table lists the HTTP
verbs and their respective member methods:

HTTP Verb Resource subclass method to implement
GET list()
GET <pk> detail()
POST create()
POST <pk> create_detail()
PUT update_list()
PUT <pk> update()
PATCH modify_list()
PATCH <pk> modify()
DELETE delete_list()
DELETE <pk> delete()

1.6.2 Sanic and AioHttp

TBone includes two mixin classes to adapt your resources to the underlying web-server of your application. Those
are SanicResource and AioHttpResource . Every resource class in your application must include one of
those mixin classes, respective to your application’s HTTP and Websockets infrastructure. These mixin classes imple-
ment the specifics pertaining to their respective libraries and leave the developer with the work on implementing the
application’s domain functionality.

If your application is based on Sanic your resources will be defined like so:

class MyResource(SanicResource, Resource):
...

If your application is based on AioHttp your resources will be defined like so:

20 Chapter 1. Overview

TBone Documentation, Release 0.5.0.4

class MyResource(AioHttpResource, Resource):
...

Note: Adapting a resource class is done with mixins rather than with single inheritance. The reason is so developers
can bind the correct resource adapter to a Resource derived class or classes that are derived from other base resources
such as MongoResource . It obviously makes no sense to have resources mixed with both SanicResource and
AioHttpResource in the same project.

1.6.3 Resource Options

Every resource has a ResourceOptions class associated with it, that provides the default options related to the
resource. Such options can be overriden using the Meta class within the resource class itself, like so:

from tbone.resources import Resource

class MyResource(Resource):
class Meta:

allowed_detail = ['get', 'post'] # In this example, only GET and POST
→˓methods are allowed

Resource options are essential to resources who wish to override built-in functionality such as:

• Serialization

• Authentication

• Allowed methods

For a full list of resource options see the API Reference

1.6.4 Formatters

Formatters are classes which help to convert Python dict objects to text (or binary), and back, using a certain transport
protocol. In TBone terminology, formatting turns an native Python object into another representation, such as JSON
or XML. Parsing is turning JSON or XML into native Python object.

Formatters are used by resource objects to convert data into a format which can be wired over the net. When using the
HTTP protocol, generally APIs expose data in a text-based format. By default, TBone formats and parses objects to
and from a JSON representation. However, developers can override this behavior by writing additional Formatter
classes to suit their needs.

1.6.5 Authentication

TBone provides an authentication mechanism which is wired into the resource’s flow. All requests made on a resource
are routed through a central dispatch method. Before the request is executed an authentication mechanism is
activated to determine if the request is allowed to be processed. Therefore, every resource has an Authentication
object associated with it. This is done using the Meta class of the resource, like so:

class BookResource(Resource):
class Meta:

authentication = Authentication()

1.6. Resources 21

TBone Documentation, Release 0.5.0.4

By default, all resources are associated with a NoAuthentication class, which does not check for any authenti-
cation whatsoever. Developers need to subclass NoAuthentication to add their own authentication mechanism.
Authentication classes implement a single method is_authenticated which has the request object passed. Nor-
mally, developers would use the request headers to check for authentication and return True or False based on the
content of the request.

1.6.6 HATEOAS

HATEOAS (Hypermedia as the Engine of Application State) is part of the REST specification. TBone supports basic
HATEOAS directives and allows for extending this support in resource subclasses. By default, all TBone resources
include a _links key in their serialized form, which contains a unique href to the resource itself, like so:

{
"first_name': 'Ron",
"last_name': 'Burgundy",
"_links" : {

"self" : {
"href" : "/api/person/1/"

}
}

}

Disabling HATEOAS support is done per resource, by setting the hypermedia flag in the ResourceOptions
class to False, like so:

class NoHypermediaPersonResource(Resource):
class Meta:

hypermedia = False
...

Adding additional links to the resource is done by overriding add_hypermedia on the resource subclass.

1.6.7 Nested Resources

Nested resources is a technique to extend a resource’s endpoints beyond basic CRUD. Every resource automatically
exposes the HTTP verbs (GET, POST, PUT, PATCH, DELETE) with their respective methods, adhereing to REST
principles. However, it is sometimes neccesary to extend a resource’s functionality by implementing additional end-
points. These can be described by two categories:

1. Resources which expose nested resources classes

2. Resources which expose additional unrest endpoints serving specific functionality.

Lets look at some examples:

model representing a user's blog comment. Internal
class Comment(Model):

user = StringField()
content = StringField()

model representing a single blog post, includes a list of comments
class Blog(Model):

title = StringField()
content = StringField()
comments = ListField(ModelField(Comment))

22 Chapter 1. Overview

TBone Documentation, Release 0.5.0.4

class CommentResource(ModelResource):
class Meta:

object_class = Comment

class BlogResource(ModelResource):
class Meta:

object_class = Blog

@classmethod
def nested_routes(cls, base_url):

return [
Route(

path=base_url + '%s/comments/add/' % (cls.route_param('pk')),
handler=cls.add_comment,
methods=cls.route_methods(),
name='blog_add_comment')

]

@classmethod
async def add_comment(cls, request, **kwargs):

1.6.8 MongoDB Resources

The MongoResource class provides out-of-the-box CRUD functionality over your MongoDB collections with as
little as three lines of code, like so:

from tbone.resources.mongo import MongoResource

class BookResource(AioHttpResource, MongoResource):
class Meta:

object_class = Book

Important: TBone is not aware of how you manage your application’s global infrastructure. Therefore Resources
and Models are not aware of your database’s handle. Because of that, TBone makes the assumption that your global
app object is attached to every request object, which both Sanic and AioHttp do by default. it also assumes
that the database handler is assigned to the global app object, which you must handle yourself, like so:

app.db = connect(...)

See TBone examples for more details

1.6.8.1 CRUD

The MongoResource class provides out-of-the-box CRUD operations on your data models. As mentioned in the
Persistency section, models are mapped to MongoDB collections. This allows for HTTP verbs are to be mapped
directly to a MongoDB collection’s core functionality.

The following table lists the way HTTP verbs are mapped to MongoDB collections

1.6. Resources 23

https://github.com/475Cumulus/TBone/tree/develop/examples/

TBone Documentation, Release 0.5.0.4

HTTP Verb MongoDB Collection method
GET find() find_one()
POST insert()
PUT save()
PATCH find_and_modify()
DELETE delete()

1.6.8.2 Filtering

The MongoResource provides a mapping mechanism between url parameters and MongoDB query parameters.
Therefore, the url:

/api/v1/movies/?genre=drama

Will be mapped to:

coll.find(query={"genre": "drama"})

Passing additional parameters to the url will add additional parameters to the query.

In addition, it is possible to also add the query operator to the urls parameters. Operators are added to the url parameters
using a double underscore __ like so:

/api/v1/movies/?rating__gt=4

Which will be mapped to:

coll.find(query={{"rating": {"$gt": 4}})

1.6.8.3 Sorting

Sorting works very similar to filtering, by passing url parameters which are mapped to the sort parameter like so:

/api/v1/member/?order_by=age

Which will be mapped to:

coll.find(sort={'age': 1}) # pymongo.ASCENDING

Placing the - sign befor ethe sorted field’s name will sort the collection in decending order like so:

/api/v1/member/?order_by=-age

Which will be mapped to:

coll.find(sort={'age': -1}) # pymongo.DESCENDING

1.6.8.4 Full Text Search

The MongoResource class provides an easy hook between url parameters and a full-text-search query. However,
full text search is not available on a collection by default. In order to utilize MongoDB’s FTS functionality the proper
indices must be configured within the collection. Please consult with the MongoDB documentation on using text
indices as well as TBone’s documentation on defining indices as part of a Model .

24 Chapter 1. Overview

https://docs.mongodb.com/manual/core/index-text/

TBone Documentation, Release 0.5.0.4

FTS (full text search) is provided out-of-the-box on all MongoResource classes, provided the relevant indices are
in place. FTS can be used using query parameters like so:

/api/books/?q=history

This will execute a FTS query on all fields that were indexed with the text index. FTS takes presedence over standard
filters, which means that if the url parameters include both FTS and filters, FTS will be executed.

The default operator for accessing FTS is q. However, this can overriden in the Meta class by overriding the option
fts_operator like so:

class BookResource(SanicResource, MongoResource):
class Meta:

object_class = Book
fts_operator = 'fts'

This will result in a usage like so:

/api/books/?fts=history

1.6.9 Hooking up to application’s router

Once a resource has been implemented, it needs to be hooked up to the application’s router. With any web application
such as Sanic or AioHttp, adding handlers to the application involves matching a uri to a specific handler method. The
Resource class implements two methods to_list and to_detail which create list handlers and detail handlers
respectively, for the application router, like so:

app.add_route('GET', '/books', BookResource.as_list())
app.add_route('GET', '/books/{id}', BookResource.as_detail())

The syntax varies a little, depending on the web server used.

1.6.9.1 Sanic Example

from sanic import Sanic
from tbone.resources import Resource
from tbone.resources.sanic import SanicResource

class TestResource(SanicResource, Resource):
async def list(self, **kwargs):

return {
'meta': {},
'objects': [

{'text': 'hello world'}
]

}

app = Sanic()
app.add_route(methods=['GET'], uri='/', handler=TestResource.as_list())

if __name__ == "__main__":
app.run(host="0.0.0.0", port=8000)

1.6. Resources 25

TBone Documentation, Release 0.5.0.4

1.6.9.2 AioHttp Example

from aiohttp import web
from tbone.resources import Resource
from tbone.resources.aiohttp import AioHttpResource

class TestResource(AioHttpResource, Resource):
async def list(self, **kwargs):

return {
'meta': {},
'objects': [

{'text': 'hello world'}
]

}

app = web.Application()
app.router.add_get('/', TestResource.as_list())

if __name__ == "__main__":
web.run_app(app, host='127.0.0.1', port=8000)

The examples above demonstrate how to manually add resources to the application router. This can become tedious
when the app has multiple resources which expose list and detail endpoints as well as some nested resources. An
alternative way is to use a Router , described below.

1.6.10 Routers

Routers are optional components which help to bind resources to the application’s url router. Whether you’re using
Sanic or AioHttp every application must have its url routes defined.

The fact that AioHttp uses a centralized system of defining routes, similar to Django, while Sanic uses a de-
centralized system of defining routes, in the form of decorators, bears no difference.

Resources are registered with routers. A router may have one or more resources registered with it. An application can
have one or more routers defined.

Note: For small applications a single router for all your resources may be good enough. Larger applications may
want to use multiple routers in order to seperate the application’s components, similar to the way a Django project
may contain multiple apps. It is up to the developers to decide how many routes are needed in their projects.

A router may have an optional path variable which the router prepends to all resources.

Resources are registered with a router like so:

class AccountResource(AioHttpResource, Resource):
...

class PublicUserResource(AioHttpResource, Resource):
...

router = Router(name='api/user') # api/user is the url prefix of
→˓all resources under this router
router.register(AccountResource, 'account') # the full url would be api/user/
→˓account/
router.register(PublicUserResource, 'public_user') # the full url would be api/user/
→˓public_user/

26 Chapter 1. Overview

TBone Documentation, Release 0.5.0.4

Once the router is created, the urls need to be added to the application’s urls.

With AioHttp it looks like this:

app = web.Application()
.
.
.
for route in router.urls():

app.router.add_route(
method=route.methods,
path=route.path,
handler=route.handler,
name=route.name

)

With Sanic it looks like this:

app = Sanic()
.
.
.
for route in router.urls():

app.add_route(
methods=route.methods,
uri=route.path,
handler=route.handler

)

1.7 Dispatch

The dispatch sub-mobule consists of all the classes used for managing internal and external events.

1.7.1 Signals

Signals are a classes which help implement a publish/subscribe, or producer/consumer relationship between compo-
nents in the application. The signals mechanism is very similar to the same concept existing in frameworks such as
Django. However, signals in TBone are implemented to be non-blocking. Because of that, signals not only help to
build code with the separation of concerns principle, but also allow application internal events to execute outside the
scope of the request/response cycle, a pattern often implemented with background tasks.

1.7.1.1 Declaring

signals are declared like so:

from tbone.dispatch import Signal

post_init = Signal()

Any module within the app can import this Signal object and can register as a receiver or use it to send events to
other receiver methods

1.7. Dispatch 27

https://en.wikipedia.org/wiki/Separation_of_concerns

TBone Documentation, Release 0.5.0.4

Note: The MongoCollectionMixin uses the post_save and post_delete events to signal that a doc-
umentent as been inserted, updated or deleted from the database. Components using MongoCollectionMixin
based models, such as the MongoResource can consume such events to implement further functionality

Signals can be triggered with parameters such as sender and instance and any other parameter that is required to
pass to the receiving method. Since signals are only handled within the same process, it is safe to pass Python objects.

1.7.1.2 Sending Signals

Sending a signal is done like so:

import asyncio
from my_signals import post_init # a module containing the declaration of the signal

...

asyncio.ensure_future(post_init.send(sender=App))

By using the ensure_future method of asyncio the send method is injected into the event loop without
awaiting on it. If the call to send was part of a request/response cycle, the execution of the receiver methods will
most likely happen after the response is returned to the client. Using ensure_future is not a requirement. Signals
can be executed synchronously. The usage entirely depends on the developers’ intentions.

1.7.1.3 Receiving Signals

Receiving, or consuming signals requires implementing a method and then registering this method as the signal re-
ceiver function using the Signal.connect()

Signal.connect(receiver, sender)
Connects a signal to a receiver function

Parameters

• receiver – The callback function which will be connected to this signal

• sender – Specifies a particular sender to receive signals from. Used to limit the receiver
function to signal from particular sender types

Calling the connect method is done like so:

from my_signals import post_init

def on_init(sender, **kwargs):
... do something

post_init.connect(on_init)

1.7.2 Channels

Channels are another form of implementing a publish/subscribe relationship between software components, but is
intended for external communication. The most common use of channels in TBone is for server-to-client communi-
cation via websockets. Channels provide the neccesary abstraction between code in the app and open websockets.
Tbone provides the flexibility of creating multiple channels directing messages on the same websocket, for publishing
different elements of the application.

28 Chapter 1. Overview

TBone Documentation, Release 0.5.0.4

Channels can store message data in any medium, depending on the implementation. TBone includes two implementa-
tions out of the box:

1. MemoryChannel : Uses an asyncio.Queue for managing message data. Useful only when deploying a
single instance of the backend

2. MongoChannel : Uses a MongoDB capped collection and a tailable cursor to wait for new messages. This
technique can be very useful for backends consisting of multiple instances. It is also quite useful for TBone-
based apps which use MongoDB as the data store, since no additional component is required. However, for large
volumes the performance cannot match that of a RAM-based database such as memcached or Redis

Custom-backend channels can be implemented by subclassing the Channel class.

Unlike signals, a single channel respond to multiple types of events. The subscribe method is used to register to
channel events.

Channel.subscribe(event, subscriber)
Subscribe to channel events.

Parameters

• event – The name of the event to subscribe to. String based

• subscriber – A Carrier type object which delivers the message to its target

Sending events to channel subscribers is done with the publish method:

Channel.publish(key, data=None)
Publish an event to the channel, to be sent to all subscribers

Parameters

• key – The name of the event

• data – The data to be passed with the event. The data must be such that it can be encoded
to JSON

TBone uses the channels mechanism inside Resource based classes to implement full-duplex RESTful APIs. There-
fore, resources can accept HTTP requests, but also send REST-like events. The MongoResource class uses a chan-
nel to publish resource events such as created or updated to implement a REST-like feedback on resource events.
The scenario works like so:

1. A client send an http POST request to the resource, creating a new data object

2. The same resource class publishes an event to the channel that a new object was created, providing the serialized
form of the object

3. The Channel object iterates through all subscribers (clients registered with a websocket connection) and sends
the REST-like event to the registered clients

The following diagram illustrates this:

1.7. Dispatch 29

TBone Documentation, Release 0.5.0.4

Channels are created as singletons based on the channel’s name. This means that every channel given a name will
have only a single instance running within the process. This is useful since channels can be created anywhere within
the app components. By doing so, channels do not have to be injected into components.

Note: Channels are not restricted to usage by Resource objects. Any component can invoke a channel and send
events.

1.7.2.1 Websockets

Creating a Channel and publishing events is not enough in order to send data to clients using websockets. Channels
do not create the actual application endpoint which clients use to connect to the websocket interface. This has to be
implemented by the developer, depending on the Webserver being used.

A minimal Sanic based example may look like this:

from tbone.dispatch.carriers.sanic_websocket import SanicWebSocketCarrier

async def resource_event_websocket(request, ws):
Create the channel - using the Mongo implementation
request.app.pubsub = MongoChannel(name='pubsub', db=request.app.db)
Subscribe to the 'resource_create' event, passing the websocket instance,

→˓wrapped in a Carrier subclass.

30 Chapter 1. Overview

TBone Documentation, Release 0.5.0.4

request.app.pubsub.subscribe('resource_create', SanicWebSocketCarrier(ws))
while True:

await ws.recv()
request.app.pubsub.unsubscribe('resource_create', SanicWebSocketCarrier(ws))

A minimal AioHttp based example may look like this:

from tbone.dispatch.carriers.aiohttp_websocket import AioHttpWebSocketCarrier

async def websocket_handler(request):

ws = web.WebSocketResponse()
await ws.prepare(request)

Create the channel - using the Mongo implementation
request.app.pubsub = MongoChannel(name='pubsub', db=request.app.db)
Subscribe to the 'resource_create' event, passing the websocket instance,

→˓wrapped in a Carrier subclass.
request.app.pubsub.subscribe('resource_create', AioHttpWebSocketCarrier(ws))

async for msg in ws:
...

return ws

1.7.2.2 Carriers

Carriers are used by channels to abstract the mechanism in which events are sent through. Because TBone is webserver
agnostic, supporting AioHttp websockets and Sanic websockets requires an abstraction layer over the websocket
object itself. Furthermore, developers can subclass the Carrier class to implement additional mechanisms such as
SockJS

1.8 Testing

1.9 Data

This section references the classes needed for defining data models. See the Data Structure and Serialization section
for more detailed explanations

1.8. Testing 31

http://sockjs.org/

TBone Documentation, Release 0.5.0.4

1.9.1 Fields

1.9.1.1 Base Field

1.9.1.2 Simple Fields

1.9.1.3 Composite Fields

1.9.1.4 Network Related Fields

1.9.1.5 MongoDB Fields

1.9.1.6 Extra Fields

1.9.2 Models

1.10 DB

This section covers the MongoDB persistency layer mixin and utility functions

1.10.1 MongoDB

1.11 Resources

This section covers API documentation for all classes and functions related to constructing REST API resources. For
more information on resources in TBone see Resources

1.11.1 Authentication

class tbone.resources.authentication.NoAuthentication
Base class for all authentication methods. Used as the default for all resouces. This is a no-op authenttication
class which always returns True

coroutine is_authenticated(request)
This method is executed by the Resource class before executing the request. If the result of this method
is False the request will not be executed and the response will be 401 un authorized. The basic imple-
mentation is no-op and always returns True

1.11.2 Formatters

class tbone.resources.formatters.Formatter
Base class for all formatters. Subclass this to create custom formatters

format(data: dict)
Formats python dict into a data string. Implement in derived classes for specific transport protocols

parse(body)
Parses a string data to python dict. Implement in derived classes for specific transport protocols

class tbone.resources.formatters.JSONFormatter
Implements JSON formatting and parsing

32 Chapter 1. Overview

TBone Documentation, Release 0.5.0.4

1.11.3 Base Resource

class tbone.resources.resources.ModelResource(*args, **kwargs)
A specialized resource class for using data models. Requires further implementation for data persistency

class tbone.resources.resources.Resource(*args, **kwargs)
Base class for all resources.

class Protocol
An enumeration.

add_hypermedia(obj)
Adds HATEOAS links to the resource. Adds href link to self. Override in subclasses to include additional
functionality

classmethod as_detail(protocol=<Protocol.http: 10>, *args, **kwargs)
returns detail views

classmethod as_list(protocol=<Protocol.http: 10>, *args, **kwargs)
returns list views

classmethod as_view(endpoint, protocol, *init_args, **init_kwargs)
Used for hooking up the endpoints. Returns a wrapper function that creates a new instance of the resource
class and calls the correct view method for it.

classmethod build_http_response(data, status=200)
Given some data, generates an HTTP response. If you’re integrating with a new web framework, other
than sanic or aiohttp, you MUST override this method within your subclass.

Parameters

• data (string) – The body of the response to send

• status (integer) – (Optional) The status code to respond with. Default is 200

Returns A response object

coroutine dispatch(*args, **kwargs)
This method handles the actual request to the resource. It performs all the neccesary checks and then
executes the relevant member method which is mapped to the method name. Handles authentication and
de-serialization before calling the required method. Handles the serialization of the response

dispatch_error(err)
Handles the dispatch of errors

format(method, data)
Calls format on list or detail

classmethod nested_routes(base_url, formatter: <built-in function callable> = None)→ list
Returns an array of Route objects which define additional routes on the resource. Implement in derived
resources to add additional routes to the resource

Parameters

• base_url – The URL prefix which will be prepended to all nested routes

• formatter – The format method to be used when parsing url variables. By default the
resource’s route_param method is used, which formats the url based on which HTTP
libary is used.

parse(method, endpoint, body)
calls parse on list or detail

1.11. Resources 33

https://docs.python.org/3/library/string.html#module-string

TBone Documentation, Release 0.5.0.4

request_args()
Returns the arguments passed with the request in a dictionary. Returns both URL resolved arguments and
query string arguments. Implemented for specific http libraries in derived classes

coroutine request_body()
Returns the body of the current request. Implemented for specific http libraries in derived classes

request_method()
Returns the HTTP method for the current request.

classmethod route_methods()
Returns the relevant representation of allowed HTTP methods for a given route. Implemented on the http
library resource sub-class to match the requirements of the HTTP library

classmethod route_param(param, type=<class ’str’>)
Returns the route representation of a url param, pertaining to the web library used. Implemented on the
http library resource sub-class to match the requirements of the HTTP library

classmethod wrap_handler(handler, protocol, **kwargs)
Wrap a request handler with the matching protocol handler

class tbone.resources.resources.ResourceOptions(meta=None)
A configuration class for Resources. Provides all the defaults and allows overriding inside the resource’s defini-
tion using the Meta class

Parameters

• name – Declare the resource’s name. If None the class name will be used. Default is None

• object_class – Declare the class of the underlying data object. Used in
MongoResource to bind the resource class to a Model

• query – Define a query which the resource will apply to all list calls. Used in
MongoResource to apply a default query fiter. Useful for cases where the entire col-
lection is never queried.

• sort – Define a sort directive which the resource will apply to GET requests without a
unique identifier. Used in MongoResource to declare default sorting for collection.

• hypermedia – Specify if the a Resource should format data and include HATEOAS
directives, specifically link to itself. Defaults to True

• fts_operator – Define the FTS (full text search) operator used in url parameters. Used
in MongoResource to perform FTS on a collection. Default is set to q.

• incoming_list – Define the methods the resource allows access to without a primary
key. These are incoming request methods made to the resource. Defaults to a full access
['get', 'post', 'put', 'patch', 'delete']

• incoming_detail – Same as incoming_list but for requests which include a pri-
mary key

• outgoing_list – Define the resource events which will be emitted without a primary
key. These are outgoing resource events which are emitted to subscribers. Defaults to these
events ['created', 'updated', 'deleted']

• outgoing_detail – Same as outgoing_list but for resource events which include
a primary key

• formatter – Provides an instance to a formatting class the resource will be using when
formatting and parsing data. The default is JSONFormatter. Developers can subclass
Formatter base class and provide implementations to other formats.

34 Chapter 1. Overview

TBone Documentation, Release 0.5.0.4

• authentication – Provides and instance to the authentication class the resource will
be using when authenticating requests. Default is NoAuthentication. Developers
must subclass the NoAuthentication class to provide their own resource authentica-
tion, based on the application’s authentication choices.

• channel – Defines the Channel class which the resource will emit events into. Defaults to
in-memory

channel_class
alias of Channel

1.11.4 MongoDB Resource

1.11.5 AioHttp Mixin

1.11.6 Sanic Mixin

1.11.7 Router

1.12 Dispatch

This section covers the methods and classes used for handing internal and external events. For more information see
Dispatch

1.12.1 Signals

class tbone.dispatch.signals.Signal
Base class for all signals

connect(receiver, sender)
Connects a signal to a receiver function

Parameters

• receiver – The callback function which will be connected to this signal

• sender – Specifies a particular sender to receive signals from. Used to limit the receiver
function to signal from particular sender types

coroutine send(sender, **kwargs)
send a signal from the sender to all connected receivers

1.12.2 Channels

class tbone.dispatch.channels.Channel
Abstract base class for all Channel implementations. Provides pure virtual methods for subclass implementa-
tions

kickoff()
Initiates the channel and start listening to events. This method should be called at the startup sequence of
the app, or as soon as events should be listened to. Pushes consume_events into the event loop.

coroutine publish(key, data=None)
Publish an event to the channel, to be sent to all subscribers

1.12. Dispatch 35

TBone Documentation, Release 0.5.0.4

Parameters

• key – The name of the event

• data – The data to be passed with the event. The data must be such that it can be encoded
to JSON

subscribe(event, subscriber)
Subscribe to channel events.

Parameters

• event – The name of the event to subscribe to. String based

• subscriber – A Carrier type object which delivers the message to its target

class tbone.dispatch.channels.mem.MemoryChannel(**kwargs)
Represents a channel for event pub/sub based on in-memory queue. uses asyncio.Queue to manage events.

1.13 Indices and tables

• genindex

• modindex

• search

36 Chapter 1. Overview

Python Module Index

t
tbone.dispatch.channels.mem, 36
tbone.resources.authentication, 32
tbone.resources.formatters, 32
tbone.resources.resources, 33

37

TBone Documentation, Release 0.5.0.4

38 Python Module Index

Index

A
add_hypermedia() (tbone.resources.resources.Resource

method), 33
as_detail() (tbone.resources.resources.Resource class

method), 33
as_list() (tbone.resources.resources.Resource class

method), 33
as_view() (tbone.resources.resources.Resource class

method), 33

B
build_http_response() (tbone.resources.resources.Resource

class method), 33

C
channel_class (tbone.resources.resources.ResourceOptions

attribute), 35
connect() (tbone.dispatch.signals.Signal method), 28

D
dispatch() (tbone.resources.resources.Resource method),

33
dispatch_error() (tbone.resources.resources.Resource

method), 33

F
format() (tbone.resources.formatters.Formatter method),

32
format() (tbone.resources.resources.Resource method),

33
Formatter (class in tbone.resources.formatters), 32

I
is_authenticated() (tbone.resources.authentication.NoAuthentication

method), 32

J
JSONFormatter (class in tbone.resources.formatters), 32

M
MemoryChannel (class in tbone.dispatch.channels.mem),

36
ModelResource (class in tbone.resources.resources), 33

N
nested_routes() (tbone.resources.resources.Resource

class method), 33
NoAuthentication (class in

tbone.resources.authentication), 32

P
parse() (tbone.resources.formatters.Formatter method),

32
parse() (tbone.resources.resources.Resource method), 33
publish() (tbone.dispatch.channels.Channel method), 29

R
request_args() (tbone.resources.resources.Resource

method), 33
request_body() (tbone.resources.resources.Resource

method), 34
request_method() (tbone.resources.resources.Resource

method), 34
Resource (class in tbone.resources.resources), 33
Resource.Protocol (class in tbone.resources.resources),

33
ResourceOptions (class in tbone.resources.resources), 34
route_methods() (tbone.resources.resources.Resource

class method), 34
route_param() (tbone.resources.resources.Resource class

method), 34

S
subscribe() (tbone.dispatch.channels.Channel method),

29

T
tbone.dispatch.channels.mem (module), 36

39

TBone Documentation, Release 0.5.0.4

tbone.resources.authentication (module), 32
tbone.resources.formatters (module), 32
tbone.resources.resources (module), 33

W
wrap_handler() (tbone.resources.resources.Resource

class method), 34

40 Index

	Overview
	Motivation
	Background
	What TBone tries to solve
	Minimum Opinions
	Antipatterns

	Installation and Testing
	Requirements
	Installation with git
	Running the tests
	Optional dependencies

	Getting Started
	Selecting a web server
	Model Definition
	Sanic Example
	Aiohttp Example

	Data Structure and Serialization
	Define a Schema
	Models
	Fields
	Nested Models
	Model Options
	Excluding fields and serialize methods

	Data Traffic
	Import Data
	Export Data
	Validation
	Serialization
	Projection
	serialize methods

	De-serialization
	Readonly

	Data Persistency
	Overview
	MongoDB
	Primary Key
	Indices
	Additional Database Operations
	Full Text Search

	Extending to other datastores

	Resources
	Overview
	Sanic and AioHttp
	Resource Options
	Formatters
	Authentication
	HATEOAS
	Nested Resources
	MongoDB Resources
	CRUD
	Filtering
	Sorting
	Full Text Search

	Hooking up to application’s router
	Sanic Example
	AioHttp Example

	Routers

	Dispatch
	Signals
	Declaring
	Sending Signals
	Receiving Signals

	Channels
	Websockets
	Carriers

	Testing
	Data
	Fields
	Base Field
	Simple Fields
	Composite Fields
	Network Related Fields
	MongoDB Fields
	Extra Fields

	Models

	DB
	MongoDB

	Resources
	Authentication
	Formatters
	Base Resource
	MongoDB Resource
	AioHttp Mixin
	Sanic Mixin
	Router

	Dispatch
	Signals
	Channels

	Indices and tables

	Python Module Index

